Computation and Verification of Lyapunov Functions
نویسندگان
چکیده
Lyapunov functions are an important tool to determine the basin of attraction of equilibria in Dynamical Systems through their sublevel sets. Recently, several numerical construction methods for Lyapunov functions have been proposed, among them the RBF (Radial Basis Function) and CPA (Continuous Piecewise Affine) methods. While the first method lacks a verification that the constructed function is a valid Lyapunov function, the second method is rigorous, but computationally much more demanding. In this paper, we propose a combination of these two methods, using their respective strengths: we use the RBF method to compute a potential Lyapunov function. Then we interpolate this function by a CPA function. Checking a finite number of inequalities, we are able to verify that this interpolation is a Lyapunov function. Moreover, sublevel sets are arbitrarily close to the basin of attraction. We show that this combined method always succeeds in computing and verifying a Lyapunov function, as well as in determining arbitrary compact subsets of the basin of attraction. The method is applied to two examples.
منابع مشابه
A Semi-Algebraic Approach for the Computation of Lyapunov Functions
In this paper we deal with the problem of computing Lyapunov functions for stability verification of differential systems. We concern on symbolic methods and start the discussion with a classical quantifier elimination model for computing Lyapunov functions in a given polynomial form, especially in quadratic forms. Then we propose a new semi-algebraic method by making advantage of the local pro...
متن کاملExtension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems
The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...
متن کاملDesign of Observer-based H∞ Controller for Robust Stabilization of Networked Systems Using Switched Lyapunov Functions
In this paper, H∞ controller is synthesized for networked systems subject to random transmission delays with known upper bound and different occurrence probabilities in the both of feedback (sensor to controller) and forward (controller to actuator) channels. A remote observer is employed to improve the performance of the system by computing non-delayed estimates of the sates. The closed-loop s...
متن کاملThe Computation of Common Infinity-norm Lyapunov Functions for Linear Switched Systems
Abstract. This paper studies the problem of the computation of common infinity-norm Lyapunov functions. For a set of continuous-time LTI systems or discrete-time LTI systems whose system matrices are upper triangular form or lower triangular form, it is proved that there exist common infinity-norm Lyapunov functions for them. Then four algorithms of computing common infinity-norm Lyapunov funct...
متن کاملAnalysis of Piecewise Linear Systems via Convex Optimization – a Unifying Approach
The recently developed technique for computation of piecewise quadratic Lyapunov functions is specialized to Lyapunov functions that are piecewise linear. This establishes a unified framework for computation of quadratic, piecewise quadratic, piecewise linear and polytopic Lyapunov functions. The search for a piecewise linear Lyapunov function is formulated as a linear programming problem, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 14 شماره
صفحات -
تاریخ انتشار 2015